HTML datasheet архив (поиск документации на электронные компоненты) Поиск даташита (1.687.043 компонентов)
Где искать

Datasheet: J308 (ON Semiconductor)

Jfet Vhf/uhf Amplifiers

 

Скачать: PDF   ZIP
ON Semiconductor
1
Motorola SmallSignal Transistors, FETs and Diodes Device Data
JFET VHF/UHF Amplifiers
NChannel -- Depletion
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain Source Voltage
VDS
25
Vdc
GateSource Voltage
VGS
25
Vdc
Forward Gate Current
IGF
10
mAdc
Total Device Dissipation @ TA = 25
C
Derate above 25
C
PD
350
2.8
mW
mW/
C
Junction Temperature Range
TJ
65 to +125
C
Storage Temperature Range
Tstg
65 to +150
C
ELECTRICAL CHARACTERISTICS
(TA = 25
C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
OFF CHARACTERISTICS
Gate Source Breakdown Voltage
(IG = 1.0
Adc, VDS = 0)
V(BR)GSS
25
--
--
Vdc
Gate Reverse Current
(VGS = 15 Vdc, VDS = 0, TA = 25
C)
(VGS = 15 Vdc, VDS = 0, TA = +125
C)
IGSS
--
--
--
--
1.0
1.0
nAdc
Adc
Gate Source Cutoff Voltage
(VDS = 10 Vdc, ID = 1.0 nAdc)
J308
J309
J310
VGS(off)
1.0
1.0
2.0
--
--
--
6.5
4.0
6.5
Vdc
ON CHARACTERISTICS
Zero Gate Voltage Drain Current(1)
(VDS = 10 Vdc, VGS = 0)
J308
J309
J310
IDSS
12
12
24
--
--
--
60
30
60
mAdc
GateSource Forward Voltage
(VDS = 0, IG = 1.0 mAdc)
VGS(f)
--
--
1.0
Vdc
SMALL SIGNAL CHARACTERISTICS
CommonSource Input Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
J308
J309
J310
Re(yis)
--
--
--
0.7
0.7
0.5
--
--
--
mmhos
CommonSource Output Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
Re(yos)
--
0.25
--
mmhos
CommonGate Power Gain
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
Gpg
--
16
--
dB
1. Pulse Test: Pulse Width
v
300
s, Duty Cycle
v
3.0%.
Order this document
by J308/D
MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
J308
J309
J310
Motorola Preferred Devices
CASE 2904, STYLE 5
TO92 (TO226AA)
1
2
3
Motorola, Inc. 1997
1 DRAIN
2 SOURCE
3
GATE
J308 J309 J310
2
Motorola SmallSignal Transistors, FETs and Diodes Device Data
ELECTRICAL CHARACTERISTICS
(TA = 25
C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Typ
Max
Unit
SMALL SIGNAL CHARACTERISTICS (continued)
CommonSource Forward Transconductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
Re(yfs)
--
12
--
mmhos
CommonGate Input Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
Re(yig)
--
12
--
mmhos
CommonSource Forward Transconductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
J308
J309
J310
gfs
8000
10000
8000
--
--
--
20000
20000
18000
mhos
CommonSource Output Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
gos
--
--
250
mhos
CommonGate Forward Transconductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
J308
J309
J310
gfg
--
--
--
13000
13000
12000
--
--
--
mhos
CommonGate Output Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
J308
J309
J310
gog
--
--
--
150
100
150
--
--
--
mhos
GateDrain Capacitance
(VDS = 0, VGS = 10 Vdc, f = 1.0 MHz)
Cgd
--
1.8
2.5
pF
GateSource Capacitance
(VDS = 0, VGS = 10 Vdc, f = 1.0 MHz)
Cgs
--
4.3
5.0
pF
FUNCTIONAL CHARACTERISTICS
Noise Figure
(VDS = 10 Vdc, ID = 10 mAdc, f = 450 MHz)
NF
--
1.5
--
dB
Equivalent ShortCircuit Input Noise Voltage
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 Hz)
en
--
10
--
nV
Hz
J308 J309 J310
3
Motorola SmallSignal Transistors, FETs and Diodes Device Data
C1 = C2 = 0.8 10 pF, JFD #MVM010W.
C3 = C4 = 8.35 pF Erie #539002D.
C5 = C6 = 5000 pF Erie (2443000).
C7 = 1000 pF, Allen Bradley #FA5C.
RFC = 0.33
H Miller #923030.
L1 = One Turn #16 Cu, 1/4
I.D. (Air Core).
L2P = One Turn #16 Cu, 1/4
I.D. (Air Core).
L2S = One Turn #16 Cu, 1/4
I.D. (Air Core).
50
SOURCE
50
LOAD
U310
C3
C2
C6
C7
C4
1.0 k
RFC
L1
L2P
L2S
+VDD
C1
C5
Figure 1. 450 MHz CommonGate Amplifier Test Circuit
70
60
50
40
30
20
,
SA
TURA
TION DRAIN CURRENT

(mA)
5.0
4.0
3.0
2.0
1.0
0
ID VGS, GATESOURCE VOLTAGE (VOLTS)
I DSS
10
0
70
60
50
40
30
20
10
, DRAIN CURRENT
(mA)
I D
IDSS VGS, GATESOURCE CUTOFF VOLTAGE (VOLTS)
Figure 2. Drain Current and Transfer
Characteristics versus GateSource Voltage
VDS = 10 V
IDSS
+ 25
C
TA = 55
C
+ 25
C
+ 25
C
55
C
+150
C
+150
C
VGS, GATESOURCE VOLTAGE (VOLTS)
5.0
4.0
3.0
2.0
1.0
0
35
30
25
20
15
10
5.0
0
, FOR
W
ARD
TRANSCONDUCT
ANCE
(mmhos)
Y fs
Figure 3. Forward Transconductance
versus GateSource Voltage
VDS = 10 V
f = 1.0 MHz
TA = 55
C
+ 25
C
+150
C
+ 25
C
55
C
+150
C
ID, DRAIN CURRENT (mA)
100 k
10 k
1.0 k
100
1.0 k
100
10
1.0
0.01
0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100
,
F
OR
W
ARD
T
RANSCONDUC
T
ANCE ( mhos)
Y fs
, OUTPUT

ADMITT
ANCE ( mhos)
Y os
VGS(off) = 2.3 V =
VGS(off) = 5.7 V =
Figure 4. CommonSource Output
Admittance and Forward Transconductance
versus Drain Current
Yfs
Yfs
Yos
VGS, GATE SOURCE VOLTAGE (VOLTS)
5.0
4.0
3.0
2.0
1.0
0
6.0
7.0
8.0
9.0
10
CAP
ACIT
ANCE (pF)
10
7.0
4.0
1.0
0
120
96
72
48
24
0
, ON RESIST
ANCE
(OHMS)
R
DS
RDS
Cgs
Cgd
Figure 5. On Resistance and Junction
Capacitance versus GateSource Voltage
J308 J309 J310
4
Motorola SmallSignal Transistors, FETs and Diodes Device Data
|Y
11
|, |Y
21
|, |Y
22
| (mmhos)
Y
12
(mmhos)
30
24
18
12
6.0
0
1000
100
200
300
500
700
f, FREQUENCY (MHz)
3.0
2.4
1.8
1.2
0.6
|S21|, |S11|
0.45
0.39
0.33
0.27
0.21
0.15
0.85
0.79
0.73
0.67
0.61
0.55
|S12|, |S22|
0.060
0.048
0.036
0.024
0.012
1.00
0.98
0.96
0.94
0.92
0.90
1000
100
200
300
500
700
f, FREQUENCY (MHz)
Figure 6. CommonGate Y Parameter
Magnitude versus Frequency
Figure 7. CommonGate S Parameter
Magnitude versus Frequency
f, FREQUENCY (MHz)
ID, DRAIN CURRENT (mA)
NF
, NOISE FIGURE (dB)
NF
, NOISE FIGURE (dB)
G
,
POWER GAIN (dB)
pg
G
,
POWER GAIN (dB)
pg
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0
4.0
6.0
8.0
10
12
14
16
18
20
22
24
24
21
18
15
12
9.0
6.0
3.0
0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0
50
100
200 300
500 700 1000
26
22
18
14
10
6.0
2.0
VDS = 10 V
ID = 10 mA
TA = 25
C
Y11
Y21
Y22
Y12
S22
S21
S11
S12
Gpg
NF
VDS = 10 V
ID = 10 mA
TA = 25
C
VDD = 20 V
f = 450 MHz
BW
10 MHz
CIRCUIT IN FIGURE 1
VDS = 10 V
ID = 10 mA
TA = 25
C
CIRCUIT IN FIGURE 1
Gpg
NF
f, FREQUENCY (MHz)
21,
11
50
40
30
20
10
0
180
170
160
150
140
130
12,
22
2
0
40
80
120
160
200
20
60
100
140
180
87
86
85
84
83
82
1000
100
200
300
500
700
Figure 8. CommonGate Y Parameter
PhaseAngle versus Frequency
f, FREQUENCY (MHz)
11,
12
120
100
80
60
40
20
20
40
60
80
100
120
21,
22
0
40
80
20
60
100
1000
100
200
300
500
700
Figure 9. S Parameter PhaseAngle
versus Frequency
22
21
12
11
VDS = 10 V
ID = 10 mA
TA = 25
C
11
21
22
21
11
12
VDS = 10 V
ID = 10 mA
TA = 25
C
Figure 10. Noise Figure and
Power Gain versus Drain Current
Figure 11. Noise Figure and Power Gain
versus Frequency
J308 J309 J310
5
Motorola SmallSignal Transistors, FETs and Diodes Device Data
Figure 12. 450 MHz IMD Evaluation Amplifier
BW (3 dB) 36.5 MHz
ID 10 mAdc
VDS 20 Vdc
Device case grounded
IM test tones f1 = 449.5 MHz, f2 = 450.5 MHz
C1 = 110 pF Johanson Air variable trimmer.
C2, C5 = 100 pF feed thru button capacitor.
C3, C4, C6 = 0.56 pF Johanson Air variable
trimmer.
L1 = 1/8
x 1/32
x 15/8
copper bar.
L2, L4 = Ferroxcube Vk200 choke.
L3 = 1/8
x 1/32
x 17/8
copper bar.
INPUT
RS = 50
C1
C2
L1
L2
VS
S
G
D
SHIELD
C3
U310
C4
VD
L3
C5
L4
C6
OUTPUT
RL = 50
Amplifier power gain and IMD products are a function of the load impedance. For the amplifier design shown above with C4 and
C6 adjusted to reflect a load to the drain resulting in a nominal power gain of 9 dB, the 3rd order intercept point (IP) value is
29 dBm. Adjusting C4, C6 to provide larger load values will result in higher gain, smaller bandwidth and lower IP values. For
example, a nominal gain of 13 dB can be achieved with an intercept point of 19 dBm.
Example of intercept point plot use:
Assume two inband signals of 20 dBm at the amplifier input.
They will result in a 3rd order IMD signal at the output of
90 dBm. Also, each signal level at the output will be
11 dBm, showing an amplifier gain of 9.0 dB and an
intermodulation ratio (IMR) capability of 79 dB. The gain and
IMR values apply only for signal levels below comparison.
Figure 13. Two Tone 3rd Order Intercept Point
20
40
60
80
100
120
OUTPUT
POWER PER
T
ONE
(dBm)
120
+20
100
80
60
INPUT POWER PER TONE (dBm)
0
+20
+40
40
20
0
3RD ORDER INTERCEPT POINT
FUNDAMENTAL OUTPUT
3RD ORDER IMD OUTPUT
U310 JFET
VDS = 20 Vdc
ID = 10 mAdc
F1 = 449.5 MHz
F2 = 450.5 MHz
J308 J309 J310
6
Motorola SmallSignal Transistors, FETs and Diodes Device Data
PACKAGE DIMENSIONS
CASE 02904
(TO226AA)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN P AND L.
DIMENSION D AND J APPLY BETWEEN L AND K
MINIMUM. LEAD DIMENSION IS UNCONTROLLED
IN P AND BEYOND DIMENSION K MINIMUM.
R
A
P
J
L
F
B
K
G
H
SECTION XX
C
V
D
N
N
X X
SEATING
PLANE
DIM
MIN
MAX
MIN
MAX
MILLIMETERS
INCHES
A
0.175
0.205
4.45
5.20
B
0.170
0.210
4.32
5.33
C
0.125
0.165
3.18
4.19
D
0.016
0.022
0.41
0.55
F
0.016
0.019
0.41
0.48
G
0.045
0.055
1.15
1.39
H
0.095
0.105
2.42
2.66
J
0.015
0.020
0.39
0.50
K
0.500
12.70
L
0.250
6.35
N
0.080
0.105
2.04
2.66
P
0.100
2.54
R
0.115
2.93
V
0.135
3.43
1
STYLE 5:
PIN 1. DRAIN
2. SOURCE
3. GATE
ISSUE AD
J308 J309 J310
7
Motorola SmallSignal Transistors, FETs and Diodes Device Data
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals"
must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
J308 J309 J310
8
Motorola SmallSignal Transistors, FETs and Diodes Device Data
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed
: Motorola Literature Distribution;
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4321,
P.O. Box 5405, Denver, Colorado 80217. 3036752140 or 18004412447
NishiGotanda, Shinagawaku, Tokyo 141, Japan. 81354878488
Mfax
TM
: RMFAX0@email.sps.mot.com TOUCHTONE 6022446609
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
US & Canada ONLY 18007741848
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 85226629298
INTERNET: http://motorola.com/sps
J308/D
© 2019 • ChipFind
Контакты
Главная страница