HTML datasheet архив (поиск документации на электронные компоненты) Поиск даташита (1.687.043 компонентов)
Где искать

Datasheet: IAM-81028 (Agilent Technologies)

Silicon Bipolar Mmic 5 Ghz Active Double Balanced Mixer/if Amp

 

Скачать: PDF   ZIP
Agilent Technologies

Document Outline

7-123
Silicon Bipolar MMIC 5 GHz
Active Double Balanced
Mixer/IF Amp
Technical Data
Features
8 dB RF-IF Conversion Gain
From 0.05 - 5 GHz
IF Output from DC to 1 GHz
Low Power Dissipation:
60 mW at V
CC
= 5 V Typ.
Single Polarity Bias Supply:
V
CC
= 4 to 8 V
Load-Insensitive Performance
Conversion Gain Flat Over
Temperature
Low LO Power Requirements:
-5 dBm Typical
Low RF to IF Feedthrough,
Low LO Leakage
Hermetic Ceramic Surface
Mount Package
IAM-81028
Description
The IAM-81028 is a complete low-
power-consumption double-
balanced active mixer housed in a
miniature ceramic hermetic
surface mount package. It is
designed for narrow or wide
bandwidth commercial, industrial
and military applications having
RF inputs up to 5 GHz and IF
outputs from DC to 1 GHz.
Operation at RF and LO
frequencies less than 50 MHz can
be achieved using optional
external capacitors to ground.
The IAM-81028 is particularly well
suited for applications that
require load-insensitive conver-
sion gain and good spurious signal
suppression with minimum LO
and bias power consumption.
Typical applications include
frequency down conversion,
28 Package
5965-9108E
modulation, demodulation and
phase detection for fiber-optic,
GPS satellite navigation, mobile
radio, and battery powered
communications receivers.
The IAM series of Gilbert
multiplier-based frequency
converters is fabricated using
HP's 10 GHz, f
T
, 25 GHz f
MAX
ISOSAT
TM
-I silicon bipolar proc-
ess. This process uses nitride self
alignment, submicrometer
lithography, trench isolation, ion
implantation, gold metallization
and polyimide inter-metal
dielectric and scratch protection
to achieve excellent performance,
uniformity and reliability.
Typical Biasing Configuration and
Functional Block Diagram
PIN 1
7-124
Electrical Specifications
[1]
T
A
= 25
C
Parameters and Test Conditions:
Symbol
V
CC
= 5 V, Z
O
= 50
, LO = -5 dBm, RF = -20 dBm
Units
Min.
Typ.
Max.
G
C
Conversion Gain
RF = 2 GHz, LO = 1.75 GHz
dB
7.0
8.5
10
f
3dB
RF
RF Bandwidth
IF = 250 MHz
GHz
4.5
(G
C
3 dB Down)
f
3dB
IF
IF Bandwidth
LO = 2 GHz
GHz
0.6
(G
C
3 dB Down)
P
1dB
IF Output Power at
RF = 2 GHz, LO = 1.75 GHz
dBm
-6
1 dB Gain Compression
IP
3
IF Output Third Order
RF = 2 GHz, LO = 1.75 GHz
dBm
3
Intercept Point
NF
SSB Noise Figure
RF = 2 GHz, LO = 1.75 GHz
dB
17
VSWR
RF Port VSWR
f = 0.05 to 5 GHz
1.5:1
LO Port VSWR
f = 0.05 to 5 GHz
1.5:1
IF Port VSWR
f < 1 GHz
1.5:1
RF
if
RF Feedthrough at IF Port
RF = 2 GHz, LO = 1.75 GHz
dBc
-25
LO
if
LO Leakage at IF Port
LO = 1.75 GHz
dBm
-25
LO
rf
LO Leakage at RF Port
LO = 1.75 GHz
dBm
-35
I
CC
Supply Current
mA
10
12.5
16
Note:
1. The recommended operating voltage range for this device is 4 to 8 V. Typical performance as a function of voltage is on the following
page.
Absolute Maximum Ratings
Absolute
Parameter
Maximum
[1]
Device Voltage
15 V
Power Dissipation
[2,3]
300 mW
RF Input Power
+14 dBm
LO Input Power
+14 dBm
Junction Temperature
200
C
Storage Temperature
-65
C to 200
C
Thermal Resistance:
[2,4]
jc
= 50
C/W
Notes:
1. Permanent damage may occur if any of
these limits are exceeded.
2. T
CASE
= 25
C.
3. Derate at 20 mW/
C for T
C
> 185
C.
4. See MEASUREMENTS section "Thermal
Resistance" in Communications
Components Catalog, for more
information.
7-125
Typical Performance, T
A
= 25
C, V
CC
= 5 V
RF: -20 dBm at 2 GHz, LO: -5 dBm at 1.75 GHz
(unless otherwise noted)
10
5
0
5
0
0
2
4
6
8
10
10
20
30
IF P
1 dB
(dBm)
0
5
10
15
G
C
(dB)
I
CC
(mA)
V
CC
(V)
Figure 1. Conversion Gain, IF P
1 dB
and I
CC
Current vs. V
CC
Bias Voltage.
I
CC
G
C
P
1 dB
10
5
0
5
5
55
25
+25
+85
+125
10
15
20
IF P
1 dB
(dBm)
0
5
10
15
G
C
(dB)
I
CC
(mA)
TEMPERATURE (
C)
Figure 2. Conversion Gain, IF P
1 dB
and I
CC
Current vs. Case Temperature.
G
C
P
1 dB
I
CC
5
0
5
10
G
C
(dB)
0.1
0.2
0.5
1.0
2.0
5.0
10
RF FREQUENCY (GHz)
Figure 3. Typical RF to IF Conversion
Gain vs. RF Frequency, T
A
= 25
C
(Low Side LO).
1:1
2:1
3:1
4:1
VSWR
0.1
1.0
10
FREQUENCY (GHz)
Figure 4. RF, LO and IF Port VSWR
vs. Frequency.
0
2
4
6
8
10
G
C
(dB)
15
5
0
10
5
LO POWER (dBm)
Figure 5. RF to IF Conversion Gain
vs. LO Power.
IF = 70 MHz
IF = 1 GHz
RF
LO
IF
40
30
20
10
0
RF to IF (dBc)
LO to RF and IF (dBm)
0.1
1.0
10
FREQUENCY (GHz)
Figure 7. RF Feedthrough Relative to
IF Carrier, dBm LO to RF and IF
Leakage vs. Frequency.
0.01
0.1
1.0
2.0
FREQUENCY, RFLO (GHz)
Figure 6. RF to IF Conversion Gain
vs. IF Frequency.
2
0
2
4
6
8
10
G
C
(dB)
0
1
2
3
4
5
HARMONIC RF ORDER
Xmn = Pif P(m*rf n*lo)
Figure 8. Harmonic Intermodulation
Suppression (dB Below Desired Output)
RF at 1 GHz, LO at 0.752 GHz, IF at 0.248 GHz.
--
12
13
36
27
45
21
0
41
28
49
35
35
48
39
53
49
63
>75
48
71
57
72
62
>75
>75
>75
>75
>75
>75
>75
>75
>75
>75
>75
>75
0
1
2
3
4
5
HARMONIC LO ORDER
LO = 2 GHz
LO = 4 GHz
High Side LO
Low Side LO
RF to IF
LO to IF
LO to RF
7-126
Package Dimensions
28 Package
4.57
0.13
(0.180
0.005 SQ)
5.33
0.25
(0.210
0.010)
2.54
0.25
(0.100
0.010)
10.16
0.25
(0.400
0.010)
END VIEW
TOP VIEW
0.13
0.05
(0.005
0.002)
8
MAX.
1.78
0.25
(0.070
0.010)
0.76
0.13
(0.030
0.005)
0.08
0.08
(0.003
0.003)
0.38
0.08
(0.015
0.003)
1.27 (0.050) TYP.
1
2
3
4
8
7
6
5
2.08
0.25
(0.082
0.010)
SIDE VIEW
DIMENSIONS ARE IN MILLIMETERS (INCHES)
Package marking code is "M810"
© 2017 • ChipFind
Контакты
Главная страница